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We derive a simple expression for the probability of trajectories of a master equation. The expression is
particularly useful when the number of states is small and permits the calculation of observables that can be
defined as functionals of whole trajectories. We illustrate the method with a two-state master equation, for
which we calculate the distribution of the time spent in one state and the distribution of the number of
transitions, each in a given time interval. These two expressions are obtained analytically in terms of modified
Bessel functions.
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The evolution of many systems in physics, chemistry, and
biology is properly described by master equations. This de-
scription is adequate when the system under consideration
has discrete states and when the rate of jumping from one
state to another does not depend on the history of the system,
i.e., when the Markov property holds. In recent years, this
description has been successfully applied to a plethora of
new problems in several fields. As examples, master equa-
tions are commonly used in biochemistry to understand the
fluctuations of chemical concentrations inside the cell �1�. In
statistical physics, they can provide a simple description of
nonequilibrium systems, useful for testing the validity of
fluctuation relations �2–4�.

From a technical point of view, master equations now
constitute a well-established field of research, and many
techniques have been developed which permit their analyti-
cal or numerical treatment �5–7�. In complicated cases, these
techniques permit calculation of the steady-state probabilities
Pn of being in state n. In simpler cases, it is sometimes
possible to solve equations in time in order to determine the
propagator p�n , t �n0 ,0� that gives the probability of being in
state n at time T starting from a state n0 at time t=0.

For many practical purposes, determination of the propa-
gator is sufficient, since many interesting observables can be
expressed as a function of the propagator. There are, how-
ever, observables that cannot be obtained conveniently from
the propagator, including in particular quantities which are
more easily expressed as functionals of entire trajectories.
Examples include the distribution of the time spent in a
given state and the probability of observing a given number
of transitions, both for a fixed time interval. Functional meth-
ods are well known for continuous stochastic process, where
techniques have been developed in parallel to those used in
quantum mechanics �8�. There are fewer examples of func-
tional methods for discrete processes �9,10�. These methods
are often field theoretic in nature and involve complications
such as renormalization which one would like to avoid in
simple discrete systems.

In this paper, we present a simple way to calculate prob-
abilities of the trajectories of master equations. The method
is straightforward, rigorous, and does not require any specific
assumptions on the equation. It is particularly useful when
the number of states available to the system is small, where it
is possible to obtain closed analytical expression for several
interesting observables. We study as example of our method

general two-state systems that, despite their simplicity, have
many nontrivial applications in problems related to single-
molecule spectroscopy �see, e.g. �11,12�� and biophysics
�see, e.g., �13–15��. Specifically, we calculate the probability
of observing a given number of transitions, N, in a time T,
and the distribution of time spent in one of the two states in
a time T. Each of these quantities can be expressed in terms
of modified Bessel functions.

We consider a master equation

d

dt
Pn = �

m

WmnPm − WnmPn, �1�

where Pn�t� is the time-dependent probability of being in
state n and Wmn is the transition rate from state m to n. For
convenience we also define

Wn
out = �

i

Wni, �2�

the total out-rate of state n. The probability that, in a time T,
the trajectory visits a predetermined sequence of states
n0 ,n1 ,n2 , . . . ,nN then becomes

P�n0,n1, . . . ,nN;T� = �
0

T

dt1�
t1

T

dt2 ¯ �
tn−1

T

dtNe−W0
outt1

�Wn0n1
e−W1

out�t2−t1�
¯ WnN−1nN

e−Wn
out�T−tn�.

�3�

This expression can be understood by noticing that the
integrand represents the probability density in time of the N
consecutive transitions according to the master equation �see
Fig. 1�. By summing over all trajectories having predeter-
mined properties, one can reconstruct the full statistics of the
stochastic process. An obvious example is the propagator,
which can be evaluated as the sum over all trajectories that
start in a given state n0 at time t=0 and end in a state nf at
time T:
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FIG. 1. Trajectory of a master equation as a function of time.
The integral in Eq. �3� is over the times of the N transition points.
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p�nf,T�n0,0� = �
N=0

�

�
�n1¯nN−1	

P�n0,n1, . . . ,nN = nf ;T� . �4�

Note that all probabilities are properly normalized; in par-
ticular, the propagator satisfies the closure relation
�nF

p�nf ,T �n0 ,0�=1.
The above expressions become particularly useful when

the number of distinct states visited by the system is small.
In this case, it is convenient to rearrange the integrals in Eq.
�3� by grouping together all time intervals in which the sys-
tem is in the same state. If ki is the number of times the
system visits state i on a given trajectory, one finds

P�n0,n1,n2, . . . ,nN;T�

= Wn0n1
Wn1n2

¯ WnN−1nN�
0

T

�
�
i

ti − T�
��

i

exp�− Wi

outti�
ti
ki−1

�ki − 1�!
�dti �5�

where the index i runs over all states visited by the system at
least once in the given sequence.

As an example, we consider the simple case of a master
equation with two states, � and �, with transition rates k+
�from � to �� and k− �from � to ��. In spite of its simplic-
ity, this case is of interest for many physical and biological
problems �11–15�. We will show that Eq. �5� allows analytic
calculation of the probabilities of different classes of trajec-
tories. This makes it possible, for example, to obtain closed
expressions for the probability of observing a given number
of transitions in a time T and for the probability of spending
a given time in states � during a time T. For convenience,
we introduce here the total rate kT=k++k− and the equilib-
rium probabilities P+

eq=k+ /kT and P−
eq=k− /kT. In this case, we

can immediately write the probabilities of all possible trajec-
tories according to Eq. �5�. The simplest trajectories are evi-
dently those in which there is no transition in the interval
�0,T�:

P�+ ;T� = e−k−T,

P�− ;T� = e−k+T. �6�

The determination of general trajectories is simplified by
having only two states, since trajectories can only alternate
between them. It is then convenient to classify trajectories
according to �a� the initial state �� or ��, �b� the total time
T, �c� the total time spent in state �, t�, and �d� the total
number of transitions, N. This is sufficient to characterize a
general term in Eq. �5�. Note that slightly different expres-
sions are obtained for N even and for N odd. The result is

P�− ,T,t+,Neven� =
�k+�T − t+��N/2�k−t+��N/2−1�

N

2
!
N

2
− 1�!

k−e−r,

P�− ,T,t+,Nodd� =
�k+�T − t+��k−t+���N−1�/2

N − 1

2
!
N − 1

2
!

k+e−r,

P�+ ,T,t+,Neven� =
�k+�T − t+��N/2−1�k−t+�N/2

N

2
!
N

2
− 1�!

k+e−r,

P�+ ,T,t+,Nodd� =
�k+�T − t+�k−t+��N−1�/2

N − 1

2
!
N − 1

2
!

k−e−r, �7�

where r= �k−t++k+�T− t+��. These equations describe all tra-
jectories with N�0 while Eqs. �6� describe the two trajecto-
ries with N=0. Note, however, that Eqs. �6� describes prob-
abilities while Eqs. �7� are probability densities in t+. To
obtain consistent notation, the two expressions in Eqs. �6�
should be multiplied by ��t+−T� and ��t+�, respectively. This
formalism allows us to calculate the distribution of time
spent in a state during a time interval T, g�t� �T�. Drawing
the initial state from the equilibrium distribution �P+

eq, P−
eq�,

we find

g�t+�T� = P+
eq�

N=0

�

P�+ ,t+,N� + P−
eq�

N=0

�

P�− ,T,t+,N� . �8�

Inserting Eqs. �6� and �7� into this expression and summing
the series, we obtain

g�t+�T� = P−
eqe−k+T��t+� + P+

eqe−k+T��T − t+�

+ e−r
 k−

t+
+

k+

�T − t+�� z

kT
I1�2z� +

2k+k−

kT
I0�2z�� ,

�9�

where r is the same as in Eqs. �7�, z=�k−t+k+�T− t+�, and
I0�z� and I1�x� are modified Bessel functions. Notice that this
result can be obtained in a less direct way by means of the
Anderson formalism �16�. Note also that the propagators can
be obtained by an integration over t+ of the various terms
contributing to g�t� �T�.

In Fig. 2 we plot the function g�t+ �T� for several values of
the parameters, and we compare it with simulations of the
master equations. In all cases studied, there is perfect agree-
ment between the simulations and the present analytic result.

An interesting limit of Eq. �9� is that of large T. Using the
asymptotic expression limx→�I��x�=exp�x� /�2	x, we see
that the leading term in 1 /T is

g�t+�T� �� 2

	z

k+k−

kT
e−���k−t+� − �k+�T − t+��2

, �10�

which has exponential tails expected from large-deviation
arguments �17�.

Another issue that can be addressed in this framework is
the probability h�N� of observing precisely N transitions in a
time interval of T. This is simply
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h�N� = �
0

T

dt+�P−
eqP�− ,T,t+,N� + P+

eqP�+ ,T,t+,N�� .

�11�

Using the above expressions for the various terms and per-
forming the integral, we find two different expressions, one
for N odd,

h�N� =
2�	�k+k−��N+1�/2

��N − 1�/2�!kT

 T

k− − k+
�N/2

e−�k++k−�T/2IN/2�
� ,

�12�

and one for N even,

h�N� =
�	T�k−k+��N/2�

2kT�N/2�! 
 T

k− − k+
��N−1�/2

e−�k++k−�T/2

� ��k− + k+�I�N−1�/2�
� + �k− − k+�I�N+1�/2�
�� ,

�13�

with 
= �k−−k+�T /2.
In evaluating the two expressions above, care must be

taken to pick up the proper branch of the half-integer powers
according to the requirement that the function h�N� should be
real and positive. In Fig. 3 we compare the distribution h�N�
with simulations of the master equation. Here, too, perfect
agreement is found. The left panel shows a symmetric case
with k+=k−=0.5 for which Eqs. �12� and �13� each have as
limit a Poisson distribution, h�N�=�Ne−� /N! with �=T /k+

=T /k−. The right panel, for the case k+=0.2 and k−=0.8, is
less trivial. The asymmetry in the rates is reflected in a dif-
ference between the distributions for N even and N odd. This
corresponds to the physical fact that one of the states is short
lived and the other long lived, so that is more likely to ob-
serve an even number of transitions. In the asymmetric case,
accurate numerical studies indicate that the average number

of transitions is N̄=T / k̃ with k̃=k+k− / �2�k++k−��.
In summary, we have shown that the probability distribu-

tions associated with the trajectories of master equations can
be expressed in general as a product over single-state prop-
erties. This can be particularly useful for systems composed
of a few states as demonstrated by the exact determination of
several statistical quantities of two-state master equations for
which results can be expressed simply in terms of modified
Bessel functions. While the methods presented here can be
applied to the evaluation of individual trajectories in more
complex problems, summation over all trajectories becomes
increasingly difficult as the number of states increases. If,
however, almost all rates are small, the dynamics of the sys-
tem can be dominated by a relatively small number of tra-
jectories. For example, this is often the case in chemical
kinetics, where average reaction paths may be well defined
even for high-dimensional dynamics �18�. In such cases, our
methods could provide a way to detect these dominant tra-
jectories and to assess their probabilities.

We would like to thank E. Barkai for pointing out relevant
references. S.P. wishes to thank J. Ferkinghoff-Borg, J. Fon-
slet, M. H. Jensen, and S. Krishna for stimulating discussion.
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FIG. 2. �Color online� Comparison of a simulation and Eq. �9�
for the function g�t+ �T�. The parameters are T=5 �top figures� and
50 �bottom figures�. The rates are k+=k−=0.5 �left figures� and k−

=0.8 and k+=0.2 �right figures�. Lines �red online� are the analytic
curves; the black points are averages over 107 simulations of the
master equation. Notice the effect of the � functions �first and last
points� in the top figures, where the probabilities are on a logarith-
mic scale. �We do not plot the � functions in the analytic curves.�
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FIG. 3. �Color online� Probabilities h�N� of observing N transi-
tions in a time T=50. Transition rates are �left� k+=k−=0.5 and k+

=0.2 and k−=0.8 �right�. The points represent statistics collected
over 107 simulations. The solid lines �red online� are the analytic
results of Eqs. �12� and �13�. The left figure corresponds to the
symmetric limit with k+=k−=0.5 in which both distributions col-
lapse into a Poisson distribution. Notice the even-odd asymmetry in
the right figure.
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